METRIC SPACES: RE-EXAM 2018

DOCENT: A. V. KISELEV

Problem 1 (5+5%). Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a non-empty metric space, r and s be two positive radii, and $\mathsf{B}^{d_{\mathfrak{X}}}_{r}(x) = \mathsf{B}^{d_{\mathfrak{X}}}_{s}(y)$ for some $x, y \in \mathfrak{X}$.

• Is it true that r = s? • Is it tr

• Is it true that x = y?

Problem 2 (15%). Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a metric space. For all $x, y \in \mathfrak{X}$ put $\varrho(x, y) = \ln(1 + d_{\mathfrak{X}}(x, y))$ by definition. Prove that the function $\varrho \colon \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ is another metric on \mathfrak{X} .

Problem 3 (15%). Is it always true that the closure $B_r^{d_{\chi}}(a)$ of an open disk of radius r coincides with the set $\{x \in \chi \mid d_{\chi}(x, a) \le r\}$? (state and prove, e.g., by counterexample)

Problem 4 (20%). Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a metric space and $\{U_i \mid i \in I\}$ be a family of connected subsets $U_i \subseteq \mathfrak{X}$ such that $U_i \cap U_j \neq \emptyset$ for all $i, j \in I$. Prove that the union $U = \bigcup_{i \in I} U_i$ is connected.

Problem 5 (25%). Let A and B be compact subsets of a Hausdorff space X. Prove that the intersection $A \cap B$ is compact in X.

Problem 6 (15%). Solve for x(s) the integral equation,

$$x(s) = \frac{1}{2} \int_0^1 x(t) dt + \exp(s) - \frac{e}{2} + \frac{1}{2},$$

by consecutive approximations starting from $x_0(s) = 0$. (In the end, verify by a direct substitution that the solution which you have found satisfies the equation.)